MATHS CLASSX 3. Algebra

Multiple choice questions

1.	Which	of the	following	are linear	equation i	in three	variables

(i) 2x = z

(ii) $2\sin x + y\cos y + z\tan z = 2$

(iii) $x + 2y^2 + z = 3$

(iv) x - y - z = 7

(1) (i) and (iii) only (2) (i) and (iv) only (3) (iv) only (4) All

- 2. Graphically an infinite number of solutions represents
- (1) three planes with no point in common
- (2) three planes intersecting at a single point
- (3) three planes intersecting in a line or coinciding with one another
- (4) None
 - 3. Which of the following is correct
 - (i) Every polynomial has finite number of multiples
 - (ii) LCM of two polynomials of degree 2 may be a constant
 - (iii) HCF of 2 polynomials may be a constant
 - (iv) Degree of HCF of two polynomials is always less then degree of LCM.
- (1) (i) and (ii) (2) (iii) and (iv) (3) (iii) only (4) (iv) only
 - 4. The HCF of two polynomials p(x) and q(x) is 2x(x+2) and LCM is $24x(x+2)^2(x-2)$. If $p(x)=8x^3+32x^2+32x$ then q(x) is equal to

(1) $4x^3 - 16x$ (2) $6x^3 - 24x$ (3) $12x^3 + 24x$ (4) $12x^3 - 24x$

- 5. Consider the following statements:
 - The HCF of X+Y and X^8-Y^8 is X+Y
 - The HCF of X+Y and X^8+Y^8 is X+Y(ii)
 - The HCF of X-Y and X^8+Y^8 is X-Y(iii)
 - The HCF of X-Y and X^8-Y^8 is X-Y

Which of the statements given above are correct?

(1) (i) and (ii)

- (2) (ii) and (iii)
- (3) (i) and (iv) (4) (ii) and (iv)

$$x^2 + 5x + 6$$

6. For what set of values $x^2 + 8x + 15$ is undefined

(1) -3,-5 (2) -5 (3) -2,-3,-5 (4) -2,-3

7.
$$\frac{x^2 + 7x + 12}{x^2 + 8x + 15} \times \frac{x^2 + 5x}{x^2 + 6x + 8}$$

$$(L)$$

$$\frac{x}{(1)} \quad x + 2 \quad (2) \quad x + 2 \quad (3) \quad \frac{35x^2 + 60x}{48x^2 + 120} \quad (4) \quad x + 2$$

8. If
$$\frac{p}{q} = a$$
 then $\frac{p^2 + q^2}{p^2 - q^2}$ is (M)
$$\frac{a^2 + 1}{a^2 - 1} (2) \frac{1 + a^2}{1 - a^2} (3) \frac{1 - a^2}{1 + a^2} (4) \frac{a^2 - 1}{a^2 + 1}$$

9. The square root of
$$4m^2 - 24m + 36 = 0$$
 is (L)
(1) $4(m-3)$ (2) $2(m-3)$ (3) $(2m-3)^2$ (4) $(m-3)$

10. The real roots of the quadratic equation
$$x^2 - x - 1 = 0$$
 are (L)

(1) 1,1 (2)
$$-1,1$$
 (3) $\frac{1+\sqrt{5}}{2}$, $\frac{1-\sqrt{5}}{2}$ (4) No real roots

11. The product of the sum and product of roots of equation $(a^2 - b^2)x^2 - (a + b)^2x + (a^3 - b^3) = 0$ is (M)

(1)
$$\frac{a^2 + ab + b^2}{a - b}$$
 (2) $\frac{a + b}{a - b}$ (3) $\frac{a - b}{a + b}$ (4) $\frac{a - b}{a^2 + ab + b^2}$

12. A quadratic polynomial whose one zero is 5 and sum of the zeroes is 0 is given by (M)

(1)
$$x^2 - 25$$
 (2) $x^2 - 5$ (3) $x^2 - 5x$ (4) $x^2 - 5x + 5$

- 13. Axis of symmetry in the term of vertical line separates parabola into(L)
- (1) 3 equal halves

(2) 5 equal halves

(3) 2 equal halves

(4) 4 equal halves

14. The parabola
$$y = -3x^2$$
 is (L)

(1) Open upward (2) Open downward

(3) Open rightward (4) Open leftward

15. Choose the correct answer (L)

- (i) Every scalar matrix is an identity matrix
- (ii) Every identity matrix is a scalar matrix
- (iii) Every diagonal matrix is an identity matrix
- (iv) Every null matrix is a scalar matrix
- (1) (i) and (iii) only (2) (iii) only (3) (iv) only (4) (ii) and (iv) only

$$2A + 3B = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 2 & 5 \end{bmatrix} \text{ and } A + 2B = \begin{bmatrix} 5 & 0 & 3 \\ 1 & 6 & 2 \end{bmatrix} \text{ then B=}$$

$$(M)$$

$$\begin{bmatrix} 8 & -1 & -2 \\ -1 & 10 & -1 \end{bmatrix} \begin{pmatrix} 8 & -1 & 2 \\ -1 & 10 & -1 \end{bmatrix} \begin{pmatrix} 8 & 1 & 2 \\ 1 & 10 & 1 \end{bmatrix} \begin{pmatrix} 8 & 1 & 2 \\ 4 & -1 & 10 & -1 \end{pmatrix}$$

$$(4 \ 3 \ 2) \begin{pmatrix} 1 \\ -2 \\ x \end{pmatrix} = (6)$$
17. If then x is (L)

(1) 4 (2) 3 (3) 2 (4) 1

18. If
$$A = \begin{pmatrix} y & 0 \\ 3 & 4 \end{pmatrix}$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ then $A^2 = 16I$ for (H)
(1) $y = 4$ (2) $y = 5$ (3) $y = -4$ (4) $y = 16$

19. If P and Q are matrices, then which of the following is true? (H)

(1)
$$PQ \neq QP$$
 (2) $(P^T)^T \neq P$ (3) $P + Q \neq Q + P$ (4) All are true

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}_{3\times 2}, B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}_{2\times 3}$$
 then which of the following products

can be made from these matrices

(i)
$$A^2$$
 (ii) B^2 (iii) AB (iv) BA (H)

(1) (i) only (2) (ii) and (iii) only (3) (iii) and (iv) only (4) All the above